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ABSTRACT
Graph Neural Networks (GNNs) show strong expressive power on
graph data mining, by aggregating information from neighbors and
using the integrated representation in the downstream tasks. The
same aggregation methods and parameters for each node in a graph
are used to enable the GNNs to utilize the homophily relational
data. However, not all graphs are homophilic, even in the same
graph, the distributions may vary significantly. Using the same
convolution over all nodes may lead to the ignorance of various
graph patterns. Furthermore, many existing GNNs integrate node
features and structure identically, which ignores the distributions
of nodes and further limits the expressive power of GNNs. To solve
these problems, we propose Meta Weight Graph Neural Network
(MWGNN) to adaptively construct graph convolution layers for
different nodes. First, we model the Node Local Distribution (NLD)
from node feature, topological structure and positional identity
aspects with the Meta-Weight. Then, based on the Meta-Weight,
we generate the adaptive graph convolutions to perform a node-
specific weighted aggregation and boost the node representations.
Finally, we design extensive experiments on real-world and syn-
thetic benchmarks to evaluate the effectiveness of MWGNN. These
experiments show the excellent expressive power of MWGNN in
dealing with graph data with various distributions.
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1 INTRODUCTION
As a powerful approach to extracting and learning information from
relational data, Graph Neural Networks (GNNs) have flourished in
many applications, including molecules [18, 31], social networks
[6], biological interactions [33], and more. Among various tech-
niques [3, 9, 14, 23], Graph Convolutional Network (GCN) stands
out as a powerful and efficient model. Since then, more variants of
GNNs, such as GAT [24], SGCN [27], GraphSAGE [10], have been
proposed to learn more powerful representations. These methods
embrace the assumption of homophily on graphs, which assumes
that connected nodes tend to have the same labels. Under such
an assumption, the propagation and aggregation of information
within graph neighborhoods are efficient in graph data mining.

Recently, some research papers [7, 20, 25, 34, 35] propose to
adapt the Graph Convolution to extend GNNs’ expressive power
beyond the limit of homophily assumption, because there do exist
real-world graphs with heterophily settings, where linked nodes
are more likely to have different labels. These methods improve
the expressive power of GNNs by changing the definition of neigh-
borhood in graph convolutions. For example, H2GCN [35] extend
the neighborhood to higher-order neighbors and AM-GCN [25]
constructs another neighborhood considering feature similarity.
Changing the definition of neighborhood do help GNNs to capture
the heterophily in graphs.

However, homophily and heterophily is only a simple measure-
ment of the NLD, because they only consider the labels of the
graphs. In real-world graphs, topological structure, node feature
and positional identity play more critical role than labels, especially
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Figure 1: Katz centrality distribution of clustered Cora (in
class 1) and Chameleon (in class 4). The nodes are clus-
tered and then the Katz Centrality distribution is plotted for
nodes of the same label but belonging in two different clus-
ters.

for graphs with few labels. So the models mentioned above lack
the ability to model NLD. We visualize the Katz centrality [12], a
measurement of the topological structure of nodes, in Figure 1 to
show two situations. We first separate the graph with METIS [11]
and show nodes of one label in Cora and Chameleon. In Cora, the
Katz centrality reveals high consistency in different parts, while
that of Chameleon shows an obvious distinction between different
parts.

In addition to the difference in topological structure distributions,
there are also variances in node feature distributions. Besides, the
correlation between topological structure and node feature distri-
butions is not consistent. Therefore, using one graph convolution
to integrate the topological structure and node feature information
leads to ignorance of such complex correlation.

In conclusion, there are two challenges limiting the expressive
power of GNNs: (1) the complexity of Node Local Distributions (2)
the inconsistency correlation between node feature and topological
structure. To overcome these challenges, we propose Meta-Weight
Graph Neural Network. For the first challenge, We model the NLD
in topological structure, node feature, positional identity fields with
Meta-Weight. In detail, the three types of NLD is captured using
Gated Recurrent Unit (GRU) and Multi-Layer Perception (MLP)
separately and then combined using an attention mechanism. For
the second challenge, based on Meta-Weight, we adaptively con-
duct graph convolution with two aggregation weights and three
channels. The proposed two aggregation weights decouple the cor-
relation between node feature and topological structure. To further
model the complex correlation, we boost the node representations
with the entangled channel, node feature channel and topologi-
cal structure channel, respectively. We conduct experiments on
semi-supervised node classification. The excellent performance of
MWGNN is demonstrated empirically on both real-world and syn-
thetic datasets. Our major contributions are summarized as follows:

• We demonstrate the insufficient modeling of NLD of existing
GNNs and propose a novel architecture MWGNN which
successfully adapt the convolution learning for different
distributions considering topological structure, node feature,
and positional identity over one Graph.

• We propose the Meta-Weight mechanism to describe the
complicated NLD and the adaptive convolution based on
Meta-Weight to boost node embeddings with decoupled ag-
gregation weights and independent convolution channels.

• We conduct experiments on real-world and synthetic datasets
to demonstrate the superior performance of MWGNN. Espe-
cially, MWGNN gains an accuracy improvement of over 20%
on graphs with the complex NLD.

2 PRELIMINARY
Let G = (V, E) be an undirected, unweighted graph with node
set V and edge set E. Let |V| = 𝑁 . We use 𝑨 ∈ {0, 1}𝑁×𝑁 for
the adjacency matrix, 𝑿 ∈ R𝑁×𝐹 for the node feature matrix, and
𝒚 ∈ R𝑁 for the node label matrix. Let N𝑖 denote the neighborhood
surrounding node 𝑣𝑖 , and N𝑖,𝑘 = {𝑣 𝑗 |𝑑 (𝑣𝑖 , 𝑣 𝑗 ) ≤ 𝑘} denote 𝑣𝑖 ’s
neighbors within 𝑘 hops.

2.1 Graph Neural Networks
Most Graph Neural Networks formulates their propagation mecha-
nisms by two phases, the aggregation phase and the transformation
phase. The propagation procedure can be summarized as

𝑯 (𝑙+1)
𝑖

= TRANS
(
AGG

(
𝑯 (𝑙)
𝑖

,
{
𝑯 (𝑙)

𝑗
: 𝑣 𝑗 ∈ 𝑁𝑖

}))
, (1)

where 𝑯 (𝑙) ∈ R𝑁×𝑑 (𝑙 ) stands for the embedding of the 𝑘-th layer
and 𝑯 (0) = 𝑿 , 𝑑 (𝑙) is the dimension of 𝑙-th layer representations.
AGG(·) denotes the function aggregating 𝑯 (𝑘) , and TRANS(·) is a
layer-wise transformation function including a weight matrix𝑾 (𝑙)

and the non-linear activation fuctions (e.g. ReLU).

2.2 Global and Local Homophily
Here we define global and local homophily ratio to estimate the
homogeneity level of a graph.

Definition 2.1 (Global Edge Homophily). We define Global Edge
Homophily ratio [35] ℎ as a measure of the graph homophily level:

ℎ =
|{(𝑣𝑖 , 𝑣 𝑗 ) : (𝑣𝑖 , 𝑣 𝑗 ) ∈ E ∧𝒚𝑖 = 𝒚 𝑗 }|

|E | , (2)

ℎ represents the percentage of edges connecting nodes of the same
label in the edge set E, Graphs with strong homophily may have
a high global edge homophily ratio up to 1, while those with low
homophily embrace a low global edge homophily ratio down to 0.

Definition 2.2 (Local Edge Homophily). For node 𝑣𝑖 in a graph,
we define the Local Edge Homophily ratio ℎ𝑖 as a measure of the
local homophily level surrounding node 𝑣𝑖 :

ℎ𝑖 =
|{(𝑣𝑖 , 𝑣 𝑗 ) : 𝑣 𝑗 ∈ N𝑖 ∧𝒚𝑖 = 𝒚 𝑗 )}|

|N𝑖 |
, (3)

ℎ𝑖 directly represents the edge homophily in the neighborhood N𝑖

surrounding node 𝑣𝑖 .

3 META-WEIGHT GRAPH NEURAL
NETWORK

Overview. In this section, we introduce the proposed method
MWGNN. The MWGNN framework consists of two stages: (a) mod-
eling Node Local Distribution by Meta-Weight and (b) adaptive
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Figure 2: The framework of MWGNN. (a) Generate the Meta-Weight considering 𝑘-hop context field for central nodes. First
we learn three local distributions in topological structure, node feature, and positional identity fields and integrate themwith
an attention layer. (b) Based on the Meta-Weight, we propose the Adaptive Convolution. By generating 𝑺𝑡 , 𝑺 𝑓 and adaptively
fusing themwith a hyper-parameter 𝛼 , the Adaptive Convolution aggregates the neighbors. Then two additional Independent
Convolution Channels are proposed to boost the node representations efficiently.

convolution. The visualization of the framework is shown in Fig-
ure 2. First, we generate the Meta-Weight to model the NLD con-
sidering topological structure, node feature, and positional identity
distributions separately. Then we integrate them via an attention
mechanism, as shown in (a). Next, the key contributions in (b) is
the Adaptive Convolution consisting of the Decoupled Aggregation
Weights and Independent Convolution Channels for node feature
and topological structure.

3.1 Modeling Node Local Distribution with
Meta-Weight

In this stage, we aim to learn a specific key to guide the graph con-
volution adaptively. As discussed in section 1, the complex Node
Local Distribution hinders the expressive power of GNNs. For the
node classification task, GNNs essentially map the combination of
node features and topological structure from neighborhood to node
labels. Using the same convolution over all the nodes and the pre-
defined neighborhood, most existing GNNs can only project a fixed
combination to node labels. Therefore, these GNNs achieve satis-
factory results on graphs with simple NLD (e.g. homophily) while
failing to generalize to graphs with complex NLD (e.g. heterophily).

To push the limit on graphs with complex NLD and conduct
adaptive convolution on nodes, first we need to answer the ques-
tion: What exactly NLD is and how to explicitly model it? Node
Local Distribution is a complex and general concept, in this paper,
when discussing NLD, we refer to the node patterns in topological
structure, node feature, and positional identity fields. Topological
structure and node feature are widely used in the learning of node
representations.

However, only using topological structure and node feature lim-
its the expressive power of GNNs, because some nodes can not
be recognized in the computational graphs [30]. IDGNN proposes
a solution to improve the expressive power of GNNs than the 1-
Weisfeiler-Lehman (1-WL) test [26], by inductively injecting nodes’
identities during message passing. It empowers GNNs with the
ability to count cycles, differentiate random 𝑑-regular graphs, etc.
Nevertheless, the task of modeling NLD is much more complex.
Thus we need a stronger identification. So we introduce the posi-
tional identity to model the NLD along with topological structure
and node feature. In general, we learn three representation matrices
D𝑡 ,D𝑓 ,D𝑝 ∈ R𝑁×𝑑Meta to formulate these three node patterns.

Finally, the three kinds of node patterns may contribute un-
equally to NLD for different nodes, so we adopt an attention mech-
anism to combine them automatically.

3.1.1 Node Patterns in Topological Structure, Node Feature, and
Positional Identity Fields. We elaborate on modeling the local node
patterns in topological structure, node feature, and positional iden-
tity fields.

Topological Structure Field. Topology information is an essential
part of graph data. Most GNNs implicitly capture topology infor-
mation by aggregating the representations of neighbor nodes, and
combining feature information with topology information. Other
methods, Struct2Vec [21] for example, explicitly learn the topology
information and express it with vectors. Usually, they utilize com-
putationally expensive mechanisms like Random Walk to explicitly
extract the topology information. In this paper, we propose a sim-
ple but effective method using the degree distribution to capture
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node patterns in the topological structure field because the degree
distribution can describe the topological structure [2].

For a node 𝑣𝑖 , the sub-graph induced byN𝑖,𝑘 contains the related
topology information. The degree distribution of N𝑖,𝑘 describes
the local topological structure. To make this distribution graph-
invariant, we sort the degrees by their value. It is noted that we
use a statistical description, the Local Degree Profile (LDP) [4] to
provide multi-angle information:

𝑿LDP,𝑖 =
[
𝑑𝑖 ,MIN(DN𝑖 ),MAX(DN𝑖 ),

MEAN(DN𝑖 ), STD(DN𝑖 )
]
,

where 𝑿LDP,𝑖 is the LDP for node 𝑣𝑖 , 𝑑𝑖 is the degree of 𝑣𝑖 and
DN𝑖 = {𝑑 𝑗 |𝑣 𝑗 ∈ N𝑖 }.

As a sequential data, the sorted LDP can be well studied by Gated
Recurrent Unit [8] as:

𝒖 (𝑡 ) = 𝜎

(
𝑾𝑢

[
𝒉 (𝑡−1) , 𝒙 (𝑡 )

]
+ 𝒃𝑢

)
𝒓 (𝑡 ) = 𝜎

(
𝑾𝑟

[
𝒉 (𝑡−1) , 𝒙 (𝑡 )

]
+ 𝒃𝑟

)
�̂�
(𝑡 )

= tanh
(
𝑾ℎ

[
𝒓 (𝑡 ) ⊙ 𝒉 (𝑡−1) , 𝒙 (𝑡 )

]
+ 𝒃ℎ

)
𝒉 (𝑡 ) =

(
1 − 𝒖 (𝑡 )

)
⊙ 𝒉 (𝑡−1) + 𝒖 (𝑡 ) ⊙ �̂�

(𝑡 )

(4)

where 𝒙 (𝑡 ) ∈ R5 is the 𝑡-th LDP vector of the sorted degree se-
quence of N𝑖,𝑘 , ⊙ denotes element-wise multiplication, and 𝒉(𝑡 )

denotes the hidden states of 𝑡-th step of GRU. The outputD𝑡 = 𝒉(𝑇 )

of GRU is the learnt topological structure distribution, where 𝑇 is
the layer number of GRU.

Node Feature Field. Usually, patterns in node feature field are
captured by directly applying neural networks on the input 𝑿 . On
the one hand, this explicit estimation of node feature patterns en-
ables any off-the-shelf neural networks. On the other hand, thanks
to the flourish of neural networks, we can accommodate different
distributions of node features.

In learning the distributions of topological structure, we sort
the degree sequence by the value of the degrees, which enables
the estimator to perform the graph-agnostic calculation. To main-
tain the node-level correspondence between feature and degree
sequence, we sort the node feature 𝑿 along the nodes’ dimension
to keep them in the same order. For node 𝑣𝑖 , the sorted node feature
sequence is:

𝑿Feature = SORT
(
{𝑿 𝑗 |𝑣𝑗 ∈ N𝑖,𝑘 }

)
,

where the sorting function SORT(·) denotes the order by nodes’
degrees. We consider two types of neural work to model Feature
Pattern:

• GRU. The mechanism to learn the distribution of node fea-
ture pattern resembles the one of topological structure pat-
tern. Taking 𝑿Feature as input, another GRU as Equation 4 is
applied. In this way, GRU reckons the distribution of node
feature pattern, and the outputD𝑓 of GRU is the learnt node
feature distribution.

• Average. The average operation can be viewed as the sim-
plest neural networks without parameters. This is a graph-
agnostic method without the need to sort the node feature.
Simply taking the average of {𝑿 𝑗 |𝑣 𝑗 ∈ N𝑖,𝑘 }, we have the
summary of the feature distribution. In the experiment, the

most results are carried by MWGNN with the average opera-
tion, which illustrates that the specific implementation is not
essential to the ability of meta-weight W. On the contrary,
the general design of the local distribution generator exerts
a more significant impact on the results.

Positional Identity Field. The position embedding is widely used
in Transformer to enhance models’ expressive power. In fact, po-
sition embedding has been used in graphs in another form [32],
by sampling sets of anchor nodes and computing the distance of a
given target node to each anchor-set. However, explicitly learning a
non-linear distance-weighted aggregation scheme over the anchor-
sets [32] is computationally intensive and requires much space for
the storage of anchor nodes. Therefore, we use the distance of the
shortest path (SPD) between any two nodes as the position em-
bedding [29], which helps the model accurately capture the spatial
dependency in a graph. To be concrete, the position embedding of
node 𝑣𝑖 is:

𝑿Position,𝑖 = (𝜙 (𝑣𝑖 , 𝑣1), 𝜙 (𝑣𝑖 , 𝑣2), · · · , 𝜙 (𝑣𝑖 , 𝑣𝑛)) , (5)

here 𝜙 (𝑣𝑖 , 𝑣 𝑗 ) denotes the SPD between nodes 𝑣𝑖 and 𝑣 𝑗 if the two
nodes are connected. If not, we set the output of 𝜙 to be a special
value, i.e., -1. Then, a neural network Φ(·) is applied on the position
embedding 𝑿Position to model the distributions of positional iden-
tity pattern. Finally, we haveD𝑝 = Φ (𝑿Position) as the positional
identity distribution.

3.1.2 Integration of Three Distributions . The above-mentioned
process models three specific local distributions: topological struc-
ture distribution, D𝑡 , node feature distribution D𝑓 , and positional
identity distribution D𝑝 . The overall local distribution of nodes
could be correlated with one of them or their combinations to dif-
ferent extents. Thus we use an attention mechanism to learn the
corresponding combination weights

(
𝒂𝑡 , 𝒂 𝑓 , 𝒂𝑝

)
∈ R𝑁×3 as the

attention values of 𝑁 nodes with the distributions D𝑡 ,D𝑓 ,D𝑝 ,
respectively. For node 𝑣𝑖 , the corresponding topology structure
distribution is the 𝑖-th row ofD𝑡 . We apply a nonlinear transfor-
mation to D𝑡 , and then use one shared attention vector 𝒒 ∈ R1×𝑑𝑞
to compute the attention value for node 𝑣𝑖 as the following:

𝜔𝑖
𝑡 = 𝒒 · tanh

(
𝑾𝑎 · (D𝑡,𝑖 )𝑇 + 𝒃

)
, (6)

where tanh(·) is the activation function, 𝑾𝑎 ∈ R𝑑𝑞×𝑑Meta is the
parameter matrix and 𝒃 ∈ R𝑑𝑞×1 is the bias vector. Similarly, the
attention values for node feature and positional identity distribu-
tions D𝑓 ,D𝑝 are obtained by the same procedure. We then nor-
malize the attention values with the softmax function to get the
final weight 𝑎𝑖𝑡 =

exp(𝜔𝑖
𝑡 )

exp(𝜔𝑖
𝑡 )+exp

(
𝜔𝑖

𝑓

)
+exp

(
𝜔𝑖
𝑝

) . Large 𝑎𝑖𝑡 implies the

topological structure distribution dominates the NLD. Similarly, we
compute 𝑎𝑖

𝑓
and 𝑎𝑖𝑝 . Now for all the 𝑁 nodes, we have the learned

weights 𝒂𝑡 =
[
𝑎𝑖𝑡

]
, 𝒂 𝑓 =

[
𝑎𝑖
𝑓

]
, 𝒂𝑝 =

[
𝑎𝑖𝑝

]
∈ R𝑁×1, and denote

𝒂𝑡 = diag (𝒂𝑡 ) , 𝒂 𝑓 = diag
(
𝒂𝒇

)
and 𝒂𝑝 = diag

(
𝒂𝑝

)
. Then we inte-

grate these three distributions to obtain the representation of NLD
W :

W = 𝒂 𝑓 ⊙ D𝑓 + 𝒂𝑡 ⊙ D𝑡 + 𝒂𝑝 ⊙ D𝑝 . (7)
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3.2 Adaptive Convolution
In the second stage, we elaborate the concrete algorithm based
on the generated meta-weight W. To adapt the graph convolu-
tion according to the information contained within the NLD, we
propose the Decoupled Aggregation Weights and Independent Con-
volution Channels for node feature and topological structure. On
the one hand, we decouple the neighbor embedding aggregation
weights based onW into 𝑺 𝑓 and 𝑺𝑡 and balance them with a hyper-
parameter 𝛼 . The design ensures that the aggregation take the most
correlated information into account. On the other hand, two ad-
ditional Independent Convolution Channels for original topology
and feature are introduced to boost the node representations.

3.2.1 Decouple Topology and Feature in Aggregation. Recalling
the discussion at the beginning of subsection 3.1, using the same
convolution over all the nodes and the pre-defined neighborhood,
most existing GNNs can only project a fixed combination of node
features and topological structure from neighborhood to node la-
bels. Therefore, these GNNs achieve satisfactory results on graphs
with simple NLD. However, when the local distribution varies, the
common MEAN(·) or normalized aggregation can not recognize
the difference and loss the distinguishment among nodes. There-
fore, we propose decoupling topology and feature in aggregation
to adaptively weigh the correlation between neighbor nodes and
ego nodes from the local distribution concept. The following is the
details of our decouple mechanism:

𝑯 (𝑙+1) = 𝜎

(
�̂�𝑯 (𝑙 )𝑾 (𝑙 )

)
, �̂� = 𝑨 ⊙ 𝑺 (8)

𝑺 = 𝛼 · 𝑺 𝑓 + (1 − 𝛼) · 𝑺𝑡 (9)
𝑺 𝑓 = Ψ𝑓 (W,𝑿 ) , 𝑺𝑡 = Ψ𝑡 (W,𝑿LDP) , (10)

where 𝑯 (𝑙) ∈ R𝑁×𝑑𝑙 denotes the hidden state of the 𝑙-th layer,
𝑾 (𝑙) ∈ R𝑑𝑙×𝑑𝑙+1 denotes the parameters of the 𝑙-th layer, 𝜎 is the
activation function, 𝑺 is the integrated weight of aggregation, and
𝑺 𝑓 , 𝑺𝑡 are decoupled weights generated by twoMLPs Ψ𝑓 ,Ψ𝑡 , respec-
tively. 𝛼 is a hyper-parameter to balance the Ψ𝑓 and Ψ𝑡 . Equipped
with the external𝑿 and𝑿LDP, the decouple of topology and feature
in aggregation empowers the graph convolution to distinguish the
different dependence on the corresponding factors and adjust itself
to achieve the best performance.

3.2.2 Independent Convolution Channels for Topology and Feature.
GNNs learn node representations via alternately performing the
aggregation and the transformation. In addition to the integrated
information, the original node patterns in the feature and topologi-
cal structure are essential in graph data mining. GNNs lose their
advantages when the representations are over-smoothed [17] be-
cause the useful original node patterns are smoothed. Recently, to
alleviate the problem, some research work [7, 15, 19, 27] proposes
that separating the procedure of aggregation and transformation.
APPNP [15] first generates predictions for each node based on its
own features and then propagates them via a personalized PageR-
ank scheme to generate the final predictions. GPR-GNN [7] first
extracts hidden states for each node and then uses Generalized
PageRank to propagate them. However, the topological informa-
tion is still entangled with the features even after separating the
projection and propagation. Therefore, we propose two additional
Independent Convolution Channels for the topology and feature

information so that the model can maintain the original signals.
The detailed computation is:

𝑯 (𝑙+1) =𝜎
(
(1 − 𝜆1 − 𝜆2) �̂�𝑯 (𝑙 ) + 𝜆1𝑯

(0)
𝑓

+

𝜆2𝑯
(0)
𝑡

)
·
(
(1 − 𝛽) · 𝑰𝑛 + 𝛽 ·𝑾 (𝑙 )

)
,

(11)

where 𝑰𝑛 ∈ R𝑑𝑙×𝑑𝑙+1 with with ones as diagonal elements and
𝜆1, 𝜆2, 𝛽 are hyper-parameters. 𝑯 (0)

𝑓
is the representation of initial

node features and𝑯 (0)
𝑡 is the representation of initial node topology

embedding.
Usually, in the previous GNNs like [16], the 𝑯 (0)

𝑓
is the original

node feature matrix 𝑿 . In our implementation, we apply fully-
connected neural networks on the original node feature matrix
𝑿 and the adjacency matrix 𝑨 respectively to obtain the lower-
dimensional initial representations for 𝑯 (0)

𝑓
and 𝑯 (0)

𝑡 , so that when
the feature dimension 𝐹 and the 𝑁 are large, we can guarantee an
efficient calculation.

3.3 Complexity
Here we analyse the time complexity of training MWGNN. Let
𝐿𝑑 = max

(
|N1,𝑘 |, · · · , |N𝑁,𝑘 |

)
denote the length of node degree se-

quence length for structure pattern. Because 𝑑LDP = 5, we leave out
this term. In subsection 3.1, the GRU costs 𝑂

(
𝐿𝑑 (𝑑2Meta + 𝑑Meta)

)
.

The MLP generating position embeddings costs 𝑂 (𝑁 2𝑑Meta) and
we can reduce it to 𝑂 ( |E |𝑑Meta) with an efficient GPU-based im-
plementation using sparse-dense matrix multiplications. Next, the
integration of three distributions costs𝑂

(
𝑁𝑑Meta𝑑2𝑞

)
. In the imple-

mentation, we set all the dimension of all hidden states as 𝑑hidden.
The computation of Equation 10 costs𝑂 (𝑁 (𝐹 + 𝑑Meta) as 𝐹 > LDP.
The computation for 𝑯 (0)

𝑓
and 𝑯 (0)

𝑡 costs 𝑂 (𝑑hidden (𝐹𝑁 + |E|).
The overall time complexity of MWGNN is

𝑂
(
𝐿𝑑𝑑

2
hidden + 𝑁𝑑3hidden + 𝑁𝐹𝑑hidden + |E|(𝐹 + 𝑑hidden)

)
,

which matches the time complexity of other GNNs.

4 DEEP ANALYSIS OF MWGNN
4.1 How Node Local Distribution Influence the

Expressive Power of GNNs
The discussion and empirical results above illustrate the importance
of modeling NLD. Recalling subsection 3.1, local edge homophily
can be a relatively plain measurement for NLD. Therefore, without
loss of generality, we take the local edge homophily and GCN [14] as
instances. We set 𝑃 as the random variable for local edge homophily
with its distribution as D𝑃 . Thus, the variance of 𝑃 exhibits how
the NLD differs throughout the graph. The larger the variance of 𝑃
is, the more complex the Local Distribution Pattern will be, and vice
versa. To prevent trivial discussion, we make a few assumptions1
to simplify our analysis without loss of generality. We derive a
learning guarantee considering the variance of 𝑃 as follows.

Theorem 4.1. Consider G = {V, E, {F𝑐 , 𝑐 ∈ {0, 1}}, {D𝑃 , 𝑃 ∼
D𝑃 }, 𝑘}, which follows assumptions in Appendix A. For any node

1The detailed assumptions can be found in Appendix B

HONG
高亮

HONG
高亮
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𝑣𝑖 ∈ 𝑉 , the expectation of its pre-activation output of 1-layer GCN
model is as follows:

E [h𝑖 ] =𝑾

(
1

𝑘 + 1 𝜇
(
F𝑦𝑖

)
+ 𝑘

𝑘 + 1E𝑃∼D𝑃 ,𝑐∼𝐵 (𝑦𝑖 ,𝑝 ),𝒙 𝑗∼F𝑐 [𝒙 𝑗 ]
)
.

For any 𝑡 > 0, the probability that the Euclidean distance between
the observation ℎ𝑖 and its expectation is larger than 𝑡 is bounded as
follows:
P ( ∥h𝑖 − E[h𝑖 ] ∥2 ≥ 𝑡 )

≤2𝑑 exp
(
−

( (𝑘 + 1)𝑡2/𝜌 (𝑾 ) +
√
𝑑𝐶𝒙 +

√
𝑑𝐶𝜇 )2

2𝑘𝑑𝜎2 + 4
√
𝑑𝐶𝒙 ( (𝑘 + 1)𝑡2/𝜌 (𝑾 ) +

√
𝑑𝐶𝒙 +

√
𝑑𝐶𝜇 )/3

)
,

where 𝜎2 = 4𝑘𝐶2
𝜇 Var [𝑃] + 𝑘𝐶𝜏 .

From Theorem 4.1 we demonstrate that the Euclidean distance
between the output embedding of a node and its expectation is small
when the variance of 𝑃 is relatively small. However, as the complex-
ity of LDP increases, the upper bound of the learning guarantee
will rapidly grow, which indicates that the traditional learning al-
gorithm is no longer promising under this circumstance. Therefore,
it is necessary to design an adaptive convolution mechanism to ad-
just the convolution operator based on nodes’ various distribution
patterns.

4.2 Connection to existing GNNs
MWGNN on identical NLD degenerates into GNNs with three chan-

nels. When learning graphs with identical NLD, the W can not
help to distinguish the nodes from the three distributions. How-
ever, we can still learn the adaptive weights by Ψ𝑓 and Ψ𝑡 with
𝑿 ,𝑿LDP. Moreover, if we remove the independent convolution
channels, MWGNN degenerates to advanced GAT with two types
of attention mechanisms.

Innovation design of MWGNN. The two stages of MWGNN could
be related to two types of methods. First, the form of Distribution-
basedMeta-Weight is like a kind of attention for aggregation. Unlike
GAT measuring the similarity between nodes embeddings along
the edges, we consider the local node distributions to generate the
weights 𝑺 from two aspects. The meta-weights give a description of
a sub-graph around central nodes, and the pair-wise correlation is
implicitly contained in the 𝑺 . In addition, the design of Independent
Convolution Channels is related to the residual layer. [5, 16] also
introduced feature residual layers into GNNs. In addition to the
residual layer of features, we also add a residual layer of topology.
In this way, the final output of MWGNN contains three channels
of representations, and the topology information is both explicitly
and implicitly embedded into the representations.

5 EXPERIMENT
5.1 Datasets
The proposed MWGNN is evaluated on nine real-world datasets
and two types of synthetic datasets.

5.1.1 Real-world datasets. The detailed information is in Table 3.
We use datasets considering both homophily and heterophily. Cora,
Citeseer, and Pubmed [28] are widely adopted citation datasets
with strong edge homophily; In contrast, Texas and Cornell [20]
are heterophily datasets; The situation of Chameleon and Squirrel

[22] are rather complex, with both homophily and heterophily
combined.

5.1.2 Synthetic datasets. For synthetic benchmarks, we randomly
generate graphs as below, referring to [1] and [25]: (1) Labels: we
randomly assign 𝐶 classes of labels to 𝑁 nodes. (2) Node features:
for the nodes with the same label, we use one Gaussian distri-
bution to generate 𝑑-dimension node features. The Gaussian dis-
tributions for the 𝐶 classes of nodes have the same co-variance
matrix, but the mean values of these 𝐶 Gaussian distributions are
distinguishable. (3) Edges: the probability of building edges follows
Bernoulli distributions controlled by 𝑩 ∈ R𝐶×𝐶 . In particular, the
probability of building an edge between node 𝑣𝑖 and 𝑣 𝑗 follows the
Bernoulli(𝑩𝑦𝑖𝑦 𝑗

), where 𝑦𝑖 and 𝑦 𝑗 are the node labels of 𝑣𝑖 and 𝑣 𝑗 .
In addition, we further generate graphs combining different

distributions (i.e. various Local Edge Homophily distributions) to
demonstrate the situation where both homophilic and heterophilic
data are mixed and tangled. Below are the details: (1) Generate
two graphs 𝐺1 (V1, E1) and 𝐺2 (V2, E2) controlled by 𝑩1 and 𝑩2

respectively. In details, we set the value of 𝑩1
𝑖 𝑗

high when 𝑦𝑖 =

𝑦 𝑗 and low when 𝑦𝑖 ≠ 𝑦 𝑗 to build a graph with high homophily.
Likewise, we set the value of 𝑩2

𝑖 𝑗
low when 𝑦𝑖 = 𝑦 𝑗 and high when

𝑦𝑖 ≠ 𝑦 𝑗 to build a graph with low homophily. (2) Combine 𝐺1 and
𝐺2 by randomly assign edges between nodes in 𝐺1 and 𝐺2 with a
probability of 𝑝 .

We generate three combined datasets: C.Homo (short for Com-
bined graphswithHomophily), C.Mixed (short for Combined graphs
with mixed Homophily and Heterophily), and C.Heter. Detailed
information of synthetic datasets is in Table 4.

5.2 Settings
We evaluate MWGNN on the semi-supervised node classification
task compared with state-of-the-art methods. For citation datasets
(Cora, Citeseer, and Pubmed), we use the public split recommended
by [28], fixed 20 nodes per class for training, 500 nodes for valida-
tion, and 1000 nodes for the test. For web page networks (Texas,
and Cornell), we adopt the public splits by [20], with an average
train/val/test split ratio of 48%/32%/20%2. For Wikipedia networks
(Chameleon and Squirrel) we use the public splits provided by [22],
with an average train/val/test split ratio of 48%/32%/20%.

We use the Adam Stochastic Gradient Descent optimizer [13]
with a learning rate 𝜂 ∈ {10−2, 10−3, 10−4}, a weight decay of 5 ×
10−4, and a maximum of 200 epochs with early stopping to train
all the models. The number of hidden layers is set to 2, and the
dimensions of hidden representations are set to 128 for fairness.
For GAT-based models, the number of heads is set to 4.

5.3 Evaluation on Real-world Benchmarks
We compare the performance of MWGNN to the state-of-the-art
methods3 in Table 1. Compared with all baselines, the proposed
MWGNN generally achieves or matches the best performance on
all datasets. Especially, MWGNN achieves an improvement of over

2[20] claims that the ratios are 60%/20%/20%, which is different from the actual data
splits shared on GitHub.
3Note that on Chameleon and Squirrel, we reuse the results H2GCN reports, as they
use public splits by [20]. The results of GPR-GNN and CPGNN are different from their
reports because they use their own splits rather than the public splits.



Meta-Weight Graph Neural Network: Push the Limits Beyond Global Homophily WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France

Table 1: The summary ofmean and standard deviation of accuracy over all runs. The best results for each dataset is highlighted
in gray. "-" stands for Out-Of-Memory.

Cora Citeseer Pubmed Chameleon Squirrel Texas Cornell

MLP 60.02 ± 0.75 53.36 ± 1.40 63.40 ± 5.03 48.50 ± 2.49 35.38 ± 1.66 75.95 ± 5.06 77.13 ± 5.32
GCN 80.50 ± 0.50 70.80 ± 0.50 79.00 ± 0.30 38.22 ± 2.67 27.12 ± 1.45 58.05 ± 4.81 56.87 ± 5.29
GAT 83.00 ± 0.70 72.50 ± 0.70 79.00 ± 0.30 43.07 ± 2.31 31.70 ± 1.85 57.38 ± 4.95 54.95 ± 5.63
GPR-GNN 83.69 ± 0.47 71.51 ± 0.29 79.77 ± 0.27 49.56 ± 1.71 37.21 ± 1.15 80.81 ± 2.55 78.38 ± 4.01
CPGNN-MLP-1 79.50 ± 0.38 71.76 ± 0.22 77.45 ± 0.24 49.25 ± 2.83 33.17 ± 1.87 80.00 ± 4.22 80.13 ± 6.47
CPGNN-MLP-2 78.21 ± 0.93 71.99 ± 0.39 78.26 ± 0.33 51.24 ± 2.43 28.86 ± 1.78 79.86 ± 4.64 79.05 ± 7.78
CPGNN-Cheby-1 81.13 ± 0.21 69.72 ± 0.59 77.79 ± 1.06 48.29 ± 2.02 36.17 ± 2.87 76.89 ± 4.95 75.00 ± 7.64
CPGNN-Cheby-2 77.68 ± 1.55 69.92 ± 0.46 78.81 ± 0.28 50.95 ± 2.46 31.29 ± 1.26 76.89 ± 5.83 75.27 ± 7.80
AM-GCN 81.70 ± 0.71 71.72 ± 0.55 - 56.70 ± 3.44 - 74.41 ± 4.50 74.11 ± 5.53
H2GCN 81.85 ± 0.38 70.64 ± 0.65 79.78 ± 0.43 59.39 ± 1.58 37.90 ± 2.02 75.13 ± 4.95 78.38 ± 6.62
MWGNN 83.30 ± 0.62 72.90 ± 0.47 82.30 ± 0.64 79.54 ± 1.28 75.41 ± 1.83 81.37 ± 4.27 79.24 ± 5.23

20% on Chameleon and Squirrel, demonstrating the effectiveness
of MWGNN while the graph data is not homophily- or heterophily-
dominated but a combined situation of the both.

5.4 Evaluation on Synthetic Benchmarks
To better investigate the performance of MWGNN on datasets with
different Global/Local Edge Homophily distributions, we conduct
experiments on a series of synthetic datasets. On the one hand,
we test MWGNN on a set of synthetic graphs whose global edge
homophily ℎ evenly ranges from 0 to 1 in Figure 3.

MWGNN outperforms GCN and GAT on all homophily settings.
On the other hand, we test our model on three combined graphs
C.Homo, C.Mixed, C.Heter. As Figure 3 reveals, MWGNN disen-
tangles the combined data well and achieves good results on all
three synthetic graphs. Besides, on C.Mixed, GCN and GAT per-
form well on the sub-graph where Local Edge Homophily is high,
with an accuracy over 95%. On the contrary, up to 31% nodes in
the sub-graph where Local Edge Homophily is low are classified
correctly. Meanwhile, MWGNN classifies the heterophily and ho-
mophily parts’ nodes much better, with accuracy of 99% and 69%,
separately. This observation suggests the significance of modeling
the local distribution of graphs.

5.5 Ablation Study
To estimate the effectiveness of each part in MWGNN, we conduct
an ablation study by removing one component at a time on our
synthetic datasets, C.Heter, C.Mixed, and C.Homo. The results of
the ablation study are in Table 2.

Meta-Weight Generator. We remove the Distribution Based Meta-
Weight Generator of MWGNN by removing the �̂� in Ψ𝑓 and Ψ𝑡 .
From the results, we can see that, in C.Heter and C.Mixed, removing
the Distribution Based Meta-Weight Generator explicitly hinders
the expressive power of MWGNN. C.Mixed is an example of graphs
with different local distributions, homophily and heterophily parts
are entangled. Besides, although C.Heter is generated by combining
two heterophily graphs, the 𝑩1 and 𝑩2 used to construct them are
different. Therefore, the distributions in C.Heter are not the same.

Without the Distribution Based Meta-Weight Generator, MWGNN
can no longer capture the distributions and generate convolution
adaptively. In addition, the performance of the model only drops a
little because the patterns in C.Homo are relatively the same. The
removal of the Distribution Based Meta-Weight Generator has little
impact on the performance of the model. These results support our
claim that Distribution Based Meta-Weight Generator is capable of
capturing different patterns, which could be used in the Adaptive
Convolution.

Table 2: Ablation Study: Accuracy of MWGNN and its vari-
ants on three synthetic combined graph.

C.Heter C.Mixed C.Homo

MWGNN 56.28 76.38 95.98
w/o 𝑫 47.24 69.84 94.73
w/o 𝑫 𝑓 51.75 74.38 96.48
w/o 𝑫𝑡 50.76 71.32 94.98
w/o 𝑫𝑝 52.26 73.78 95.21
w/o Indep. Channels 53.77 73.87 86.73

We further analyse the impact of the three components of the
Distribution Based Meta-Weight Generator by removing the three
local distributions D𝑡 ,D𝑓 , and D𝑝 one at a time. On C.Mixed,
the removal of the local distributions causes the performance of
MWGNN to decline in varying extents respectively, which testifies
the effect of the proposed Att(·) in subsubsection 3.1.2.

Independent Channels.To demonstrate the performance improved
through the Independent Convolution Channels for Topology and
Feature, we test MWGNN after disabling it in Equation 11. The
results suggest that our explicit utilization of the independent chan-
nel for topology information helps the model to achieve better
results. Especially, the shared patterns in C.Homo lead to the a
improvement.

5.6 Parameter Analysis
We investigate the sensitivity of hyper-parameters of MWGNN
on Cora and Squirrel datasets. To be specific, the hyper-parameter
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Figure 3: MWGNN and other baselines on synthetic datasets.
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Figure 4: Parameter analysis over Cora and Squirrel on hop
number 𝑘 and combine alpha 𝛼 .

𝛼 controlling the ratio of convolution weight 𝑺 𝑓 and 𝑺𝑑 and the
number of hops we consider when modeling the local distribution.

Analysis of 𝑘 . We test MWGNN with different hop numbers
𝑘 , varying it from 0 to 4. As Figure 4 shows, as 𝑘 increases, the
performance is generally stable. Besides, a small 𝑘 is fair enough
for MWGNN to reach satisfactory results.

Analysis of 𝛼 . To analyse the impact of 𝛼 in Equation 10, we
study the performance of MWGNN with 𝛼 ranging evenly from 0
to 1. Cora reaches its maximum at 𝛼 = 0.8, while squirrel reaches
its maximum at 𝛼 = 0.6, which indicates that different graphs vary
in the dependency on feature and topology. In addition, MWGNN
is relatively stable when 𝛼 changes around the maximum point.

6 RELATEDWORK
6.1 Graph Neural Networks
The Graph Neural Networks (GNNs) aim to map the graph and
the nodes (sometimes edges) to a low-dimension space. Scarselli
et al. [23] first propose a GNN model utilizing recursive neural
networks to update topologically connected nodes’ information
recursively. Then, Bruna et al. expand GNNs to spectral space [3].
Defferrard, Bresson, and Vandergheynst [9] generalize a simpler
model, ChebyNet. Kipf and Welling [14] propose Graph Convolu-
tion Networks (GCNs) which further simplify the graph convolu-
tion operation. GAT [24] introduces an attention mechanism in
feature aggregation to refine convolution on graphs. GraphSAGE
[10] presents a general inductive framework, which samples and
aggregates feature from local neighborhoods of nodes with various
pooling methods such as mean, max, and LSTM.

6.2 GNNs on Heterophily Graphs
Many models[7, 20, 25, 34, 35] design aggregation and transforma-
tion functions elaborately to obtain better compatibility for het-
erophily graph data and retain their efficiency on homophily data.
Geom-GCN [20] formulates graph convolution by geometric rela-
tionships in the resulting latent space. H2GCN [35] uses techniques
of embedding separation, higher-order neighborhoods aggregation,
and intermediate representation combination. CPGNN [34] incor-
porates a label compatibility matrix for modeling the heterophily or
homophily level in the graph to go beyond the assumption of strong
homophily. GPR-GNN [7] adopts a generalized PageRank method
to optimize node feature and topological information extraction,
regardless of the extent to which the node labels are homophilic
or heterophilic. AM-GCN [25] fuses node features and topology
information better and extracts the correlated information from
both node features and topology information substantially, which
may help in heterophily graph data.

7 CONCLUSION
In this paper, we focus on improving the expressive power of GNNs
on graphs with different LDPs. We first show empirically that dif-
ferent LDPs do exist in some real-world datasets. With theoretical
analysis, we show that this variety of LDPs has an impact on the per-
formance of traditional GNNs. To tackle this problem, we propose
Meta-Weight Graph Neural Network, consisting of two key stages.
First, to model the NLD of each node, we construct the Meta-Weight
generator with multi-scale information, including structure, feature
and position. Second, to decouple the correlation between node
feature and topological structure, we conduct adaptive convolution
with two aggregation weights and three channels. Accordingly,
we can filter the most instructive information for each node and
efficiently boost the node representations. Overall, MWGNN out-
performs corresponding GNNs on real-world benchmarks, while
maintaining the attractive proprieties of GNNs. We hope MWGNN
can shed light on the influence of distribution patterns on graphs,
and inspire further development in the field of graph learning.
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A DETAILED INFORMATION FOR DATASETS

Table 3: Statistics for real-world datasets.

Dataset |V| |E | |Y| F ℎ

Cora 2708 10556 7 1433 0.81
Citeseer 3327 9104 6 3703 0.74
Pubmed 19717 88648 3 500 0.8
Texas 183 325 5 1703 0.11
Cornell 183 298 5 1703 0.31
Chameleon 2277 36101 5 1703 0.2
Squirrel 5201 217073 5 2089 0.22

Table 4: Statistics for combined synthetic datasets. ℎ1, ℎ2 de-
notes ℎ for separate graphs that are used to combine.

Dataset |V| |E | |Y| F ℎ ℎ1 ℎ2

C.Homo 1000 22937 5 100 0.51 0.50 0.50
C.Mixed 1000 22705 5 100 0.39 0.10 0.75
C.Heter 1000 15201 5 100 0.20 0.20 0.20

B PROOFS OF THEOREM 4.1
Notation. G = (V, E) denotes a graph with 𝑑-dimension node

feature vector 𝒙𝑖 for 𝑣𝑖 ∈ V . Features of all dimensions are bounded
by a positive scalar𝐶𝒙 .𝑦𝑖 denotes the label for node 𝑣𝑖 . 𝑃 is a random
variable for local edge homophily with its distribution as D𝑃 . h𝑖
denotes the embedding of node 𝑣𝑖 .𝑾 ∈ 𝑅𝑑×𝑑 denotes the parameter
matrix of 1-layer GCN model. 𝜌 (𝑾 ) denotes the largest singular
value of𝑾 .

Assumptions on Graphs. (1) G is k-regular. It can prevent us
from trivial discussion on the expression of GCN and help us focus
on the mechanism of massage passing. (2) The features of node
𝑣𝑖 are sampled from feature distribution F𝑦𝑖 , i.e, 𝒙𝑖 ∼ F𝑦𝑖 , with
𝜇 (F𝑦𝑖 ) = E [𝒙𝑖 |𝑦𝑖 ] and 𝜏 (F𝑦𝑖 ) = E [𝒙𝑖 ◦ 𝒙𝑖 |𝑦𝑖 ]. Similarly, F𝑦𝑖 de-
notes the feature distribution of nodes having labels other than
𝑦𝑖 . (3) Dimensions of 𝒙𝑖 are independent to each other and they
are all bounded by a positive scalar 𝐶𝒙 . (4) Dimensions of 𝜇 (F𝑦𝑖 )
and 𝜏 (F𝑦𝑖 ) are all bounded by positive scalars 𝐶𝜇 and 𝐶𝜏 , respec-
tively. (5) For node 𝑣𝑖 , its local edge homophily 𝑝 is sampled from
pattern distribution D𝑃 . If 𝑃 = 𝑝 , node 𝑣𝑖 ’s neighbors’ labels are
independently sampled from Bernoulli distribution 𝐵 (𝑦𝑖 , 𝑝).

Lemma B.1 (Bernstein’s ineqality). Let 𝑋1, ..., 𝑋𝑛 be indepen-
dent bounded random variables with 𝑋𝑖 ∈ [𝑎, 𝑏] for any 𝑖 , where
−∞ < 𝑎 ≤ 𝑏 < +∞. Denote that 𝑋 = 1

𝑛 (𝑋1 + ... + 𝑋𝑛) and
𝜎2 =

∑𝑛
𝑖=1𝑉𝑎𝑟 [𝑋𝑖 ]. Then for any 𝑡 > 0, the following inequalities

hold:

P
(
𝑋 − 𝐸

[
𝑋

]
≥ 𝑡

)
≤ exp

(
− 𝑛𝑡2

2𝜎2 + 2𝑡 (𝑏 − 𝑎)/3

)
,

P
(
𝑋 − 𝐸

[
𝑋

]
≤ −𝑡

)
≤ exp

(
− 𝑛𝑡2

2𝜎2 + 2𝑡 (𝑏 − 𝑎)/3

)
.

Lemma B.2 (Hoeffding’s Ineqality). Let 𝑋1, ..., 𝑋𝑛 be inde-
pendent bounded random variables with 𝑋𝑖 ∈ [𝑎, 𝑏] for any 𝑖 , where
−∞ < 𝑎 ≤ 𝑏 < +∞. Denote that 𝑋 = 1

𝑛 (𝑋1 + ... + 𝑋𝑛). Then for any
𝑡 > 0,the following inequalities hold:

P
(
𝑋 − 𝐸

[
𝑋

]
≥ 𝑡

)
≤ exp

(
− 2𝑛𝑡2

(𝑏 − 𝑎)2

)
,

P
(
𝑋 − 𝐸

[
𝑋

]
≤ −𝑡

)
≤ exp

(
− 2𝑛𝑡2

(𝑏 − 𝑎)2

)
.

Lemma B.3 (The Union Bound). For any events 𝐴1, 𝐴2, ..., 𝐴𝑛 ,
we have

P

(
𝑛⋃
𝑖=1

𝐴𝑖

)
≤

𝑛∑︁
𝑖=1
P (𝐴𝑖 ) .

Theorem B.4. Consider G = {V, E, {F𝑐 , 𝑐 ∈ {0, 1}}, {D𝑃 , 𝑃 ∼
D𝑃 }, 𝑘}, which follows assumptions (1) - (5). For any node 𝑣𝑖 ∈ 𝑉 ,
the expectation of its pre-activation output of 1-layer GCN model is
as follows:

E [h𝑖 ] =𝑾

(
1

𝑘 + 1 𝜇
(
F𝑦𝑖

)
+ 𝑘

𝑘 + 1E𝑃∼D𝑃 ,𝑐∼𝐵 (𝑦𝑖 ,𝑝),𝒙 𝑗∼F𝑐 [𝒙 𝑗 ]
)
.

For any 𝑡 > 0, the probability that the Euclidean distance between
the observation h𝑖 and its expectation is larger than 𝑡 is bounded as
follows:

P (∥h𝑖 − E[h𝑖 ] ∥2 ≥ 𝑡)

≤2𝑑 exp
(
−

((𝑘 + 1)𝑡2/𝜌 (𝑾 ) +
√
𝑑𝐶𝒙 +

√
𝑑𝐶𝜇 )2

2𝑘𝑑𝜎2 + 4
√
𝑑𝐶𝒙 ((𝑘 + 1)𝑡2/𝜌 (𝑾 ) +

√
𝑑𝐶𝒙 +

√
𝑑𝐶𝜇 )/3

)
,

where 𝜎2 = 4𝑘𝐶2
𝜇 Var [𝑃] + 𝑘𝐶𝜏 .

Proof. For a single layer GCNmodel, the process can be written
in the following form for node 𝑣𝑖

h𝑖 =
∑︁

𝑗 ∈{𝑖 }∪N(𝑖)

1
𝑘 + 1𝑾𝒙 𝑗 ,

so that the expectation of h𝑖 can be derived as follows:

E [h𝑖 ] = E


∑︁
𝑗 ∈{𝑖 }∪N(𝑖)

1
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1
𝑘 + 1𝑾E [𝒙𝑖 ] +
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𝑗 ∈N(𝑖)

1
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)
+ 𝑘

𝑘 + 1𝑾E𝑃∼D𝑃 ,𝑐∼𝐵 (𝑦𝑖 ,𝑝),𝒙 𝑗∼F𝑐
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1

𝑘 + 1 𝜇
(
F𝑦𝑖

)
+ 𝑘

𝑘 + 1E𝑃∼D𝑃 ,𝑐∼𝐵 (𝑦𝑖 ,𝑝),𝒙 𝑗∼F𝑐
[
𝒙 𝑗

] )
.

When 𝑃 is given, the conditional distribution of 𝒙 𝑗 follows(
𝒙 𝑗 |𝑃 = 𝑝

)
∼

{
𝑝F𝑦𝑖 + (1 − 𝑝)F𝑦𝑖 , 𝑗 ∈ N (𝑖),
F𝑦𝑖 , 𝑗 = 𝑖 .

.

Let 𝒙𝑙
𝑗
, 𝑙 = 1, ..., 𝑑 denote the 𝑙-th element of 𝒙 𝑗 . Then, for any di-

mension 𝑙 ,
{
𝒙𝑙
𝑗
, 𝑗 ∈ N (𝑖)

}
is a set of independent random variables.
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When 𝑗 ∈ N (𝑖)
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2
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)
+𝜏𝑙 (F𝑦𝑖 )
≤𝐶𝜏 .

By the law of total variance,

Var
[
𝒙𝑙𝑗

]
= Var

[
E

[
𝒙𝑙𝑗

��𝑃 ] ]
+ E

[
Var

[
𝒙𝑙𝑗

��𝑃 ] ]
≤ 4𝐶2

𝜇 Var [𝑃] +𝐶𝜏 .

Then for any 𝑡1 > 0, we have the following bound by applying
lemma Theorem B.1 and lemma Theorem B.3:

P
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≤2 exp
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.

where 𝜎2 = 4𝑘𝐶2
𝜇 Var [𝑃] + 𝑘𝐶𝜏 . By applying lemma Theorem B.3

to Theorem B.1, the following holds:
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Furthermore, we have
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,

where ∥𝑾 ∥2 denotes the matrix 2-norm of𝑾 and 𝜌 (𝑾 ) denotes
the largest singular value of𝑾 . Then, for any 𝑡 > 0, we have
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,

which concludes the proof. □


	Abstract
	1 Introduction
	2 Preliminary
	2.1 Graph Neural Networks
	2.2 Global and Local Homophily

	3 Meta-Weight Graph Neural Network
	3.1 Modeling Node Local Distribution with Meta-Weight
	3.2 Adaptive Convolution
	3.3 Complexity

	4 Deep Analysis of MWGNN
	4.1 How Node Local Distribution Influence the Expressive Power of GNNs
	4.2 Connection to existing GNNs

	5 Experiment
	5.1 Datasets
	5.2 Settings
	5.3 Evaluation on Real-world Benchmarks
	5.4 Evaluation on Synthetic Benchmarks
	5.5 Ablation Study
	5.6 Parameter Analysis

	6 Related Work
	6.1 Graph Neural Networks
	6.2 GNNs on Heterophily Graphs

	7 Conclusion
	Acknowledgments
	References
	A Detailed Information for Datasets
	B Proofs of THEOREM 4.1



